htw saar QR-encoded URL
Back to Main Page Choose Module Version:
XML-Code

flag


Mathematics III

Module name (EN):
Name of module in study programme. It should be precise and clear.
Mathematics III
Degree programme:
Study Programme with validity of corresponding study regulations containing this module.
Industrial Engineering, Bachelor, ASPO 01.10.2021
Module code: WIB21-WPM-T-111
SAP-Submodule-No.:
The exam administration creates a SAP-Submodule-No for every exam type in every module. The SAP-Submodule-No is equal for the same module in different study programs.
P450-0068
Hours per semester week / Teaching method:
The count of hours per week is a combination of lecture (V for German Vorlesung), exercise (U for Übung), practice (P) oder project (PA). For example a course of the form 2V+2U has 2 hours of lecture and 2 hours of exercise per week.
2V+2U (4 hours per week)
ECTS credits:
European Credit Transfer System. Points for successful completion of a course. Each ECTS point represents a workload of 30 hours.
5
Semester: according to optional course list
Mandatory course: no
Language of instruction:
German
Assessment:
Written exam

[updated 13.09.2018]
Exam recurrence:
The information regarding exam recurrence is found within the exam policy of the study programme (ASPO).
Applicability / Curricular relevance:
All study programs (with year of the version of study regulations) containing the course.

WIBASc-525-625-FÜ27 Industrial Engineering, Bachelor, ASPO 01.10.2013 , semester 5, optional course, technical
WIB21-WPM-T-111 (P450-0068) Industrial Engineering, Bachelor, ASPO 01.10.2021 , optional course, technical
Workload:
Workload of student for successfully completing the course. Each ECTS credit represents 30 working hours. These are the combined effort of face-to-face time, post-processing the subject of the lecture, exercises and preparation for the exam.

The total workload is distributed on the semester (01.04.-30.09. during the summer term, 01.10.-31.03. during the winter term).
60 class hours (= 45 clock hours) over a 15-week period.
The total student study time is 150 hours (equivalent to 5 ECTS credits).
There are therefore 105 hours available for class preparation and follow-up work and exam preparation.
Recommended prerequisites (modules):
None.
Recommended as prerequisite for:
Module coordinator:
Prof. Dr. Frank Kneip
Lecturer: Prof. Dr. Frank Kneip

[updated 26.07.2023]
Learning outcomes:
After successfully completing this module, students will have a basic understanding of the higher mathematical methods presented in the course. They will have the skills necessary to
use these methods in real situations. Students will be able to analyze real problems with regard to the methods presented.  
Number series, power series, function series (especially Fourier series) and Taylor series.

[updated 13.09.2018]
Module content:
Fourier and Laplace transform. Ordinary differential equations, mainly linear differential equations of the nth order and linear differential equation systems. Optional: higher-dimensional integration. Application of the above areas to technical and economic problems (based on examples).

[updated 13.09.2018]
Teaching methods/Media:
Lecture coupled with exercises. Media used: mainly blackboard and occasionally a projector (CAS calculations).

[updated 13.09.2018]
Recommended or required reading:
L. Papula: Mathematik für Ingenieure und Naturwissenschaftler Bände 1, 2 und 3
Fetzer/Fränkel: Mathematik Bände 2 und 3
H. Stöcker: Analysis für Ingenieurstudenten Band 2

[updated 13.09.2018]
[Mon Dec 23 12:16:23 CET 2024, CKEY=wmi, BKEY=wi3, CID=WIB21-WPM-T-111, LANGUAGE=en, DATE=23.12.2024]