|
|
Code: MASCM-DB-240 |
4VF (4 Semesterwochenstunden) |
6 |
Studiensemester: 2 |
Pflichtfach: ja |
Arbeitssprache:
Englisch |
Prüfungsart:
Written exam and term paper with presentation (90 minutes / weighting 1:1 / can be repeated every semester)
[letzte Änderung 12.01.2025]
|
MASCM-DB-240 Supply Chain Management und Digital Business, Master, SO 01.04.2025
, 2. Semester, Pflichtfach
geeignet für Austauschstudenten mit learning agreement
|
Die Präsenzzeit dieses Moduls umfasst bei 15 Semesterwochen 60 Veranstaltungsstunden (= 45 Zeitstunden). Der Gesamtumfang des Moduls beträgt bei 6 Creditpoints 180 Stunden (30 Std/ECTS). Daher stehen für die Vor- und Nachbereitung der Veranstaltung zusammen mit der Prüfungsvorbereitung 135 Stunden zur Verfügung.
|
Empfohlene Voraussetzungen (Module):
Keine.
|
Sonstige Vorkenntnisse:
See admission requirements (at least 9 ECTS credits in mathematics / statistics)
[letzte Änderung 12.01.2025]
|
Als Vorkenntnis empfohlen für Module:
MASCM-DB-310 Master-Abschlussarbeit MASCM-DB-320 Master-Colloquium
[letzte Änderung 12.01.2025]
|
Modulverantwortung:
Prof. Dr. Teresa Melo |
Dozent/innen: Prof. Dr. Teresa Melo
[letzte Änderung 12.01.2025]
|
Lernziele:
After having successfully completed this module, students will be able • to explain a framework for strategic, tactical and operational planning in logistics and supply chain management, • to apply techniques for building (mixed-integer) linear programming (MILP) models, • to assist decision-making by developing MILP models for selected strategic, tactical and operational planning problems (e.g. logistics network design, aggregate production planning, scheduling and routing), • to understand the strengths and limitations of MILP models, • to use general-purpose optimization software for spreadsheets, such as Excel Solver and OpenSolver, • to use (meta-)heuristic techniques and know when and how to apply them, • to perform what-if analyses, evaluate their outcomes and, if necessary, re-build the optimization model previously created, • to write a report on a specific case study and give a presentation (both in English) within a specified time frame.
[letzte Änderung 12.01.2025]
|
Inhalt:
A large number of problems arising in practical situations in logistics and supply chain management can be formulated as discrete (mixed-integer) linear optimization problems. This module introduces the modeling skills required to translate practical examples into (mixed-) integer linear programs. In addition, general-purpose optimization solvers for spreadsheets, such as Excel Solver and OpenSolver, will be used to solve selected applications. For large combinatorial problems, several ways of finding feasible solutions with heuristics and metaheuristics will also be explored. 1. Decision-making levels and prescriptive analytics in logistics planning 2. Foundations of mathematical modeling • Building linear programming models • General techniques for building (mixed-)integer linear programs • What-if analysis 3. Strategic planning – Designing the logistics network • Classification of logistics network design problems • Single- and multi-commodity discrete location problems • Multi-echelon network design and redesign problems • Modeling and solving selected applications with optimization software 4. Tactical planning – Managing the logistics network • Aggregate production planning • Modeling logical requirements • Modeling and solving selected applications with optimization software 5. Operational planning – Running the logistics system • Last-mile delivery problems (e.g. travelling salesman problem, vehicle routing problem) • Production scheduling problems • Heuristics and metaheuristics for solving selected applications
[letzte Änderung 12.01.2025]
|
Weitere Lehrmethoden und Medien:
Lecture and group work with presentation of the results obtained by the students. The lecture is supplemented by homework exercises covering a wide range of applications. The solutions to the exercises will be discussed with the students in class (where appropriate with the help of optimization software).
[letzte Änderung 12.01.2025]
|
Literatur:
• K. R. Baker (2016). Optimization Modeling with Spreadsheets. 3rd edition, John Wiley & Sons • M. Gendreau, J.Y. Potvin (eds.) (2019). Handbook of Metaheuristics. 3rd edition, Springer • G. Ghiani, G. Laporte, R. Musmanno (2022). Introduction to Logistics Systems Management: With Microsoft Excel and Python Examples. 3rd edition, Wiley Series in Operations Research and Management Science, Wiley-Blackwell • F.S. Hillier, G.L. Lieberman (2021). Introduction to Operations Research. 11th edition, McGraw-Hill Higher Education • E. Taillard (2023). Design of Heuristic Algorithms for Hard Optimization: With Python Codes for the Traveling Salesman Problem. Series: Graduate Texts in Operations Research, Springer Cham
[letzte Änderung 12.01.2025]
|