htw saar Piktogramm QR-encoded URL
Zurück zur Hauptseite Version des Moduls auswählen:
Lernziele hervorheben XML-Code

Mathematik 3

Modulbezeichnung:
Bezeichnung des Moduls innerhalb des Studiengangs. Sie soll eine präzise und verständliche Überschrift des Modulinhalts darstellen.
Mathematik 3
Modulbezeichnung (engl.): Mathematics 3
Studiengang:
Studiengang mit Beginn der Gültigkeit der betreffenden ASPO-Anlage/Studienordnung des Studiengangs, in dem dieses Modul zum Studienprogramm gehört (=Start der ersten Erstsemester-Kohorte, die nach dieser Ordnung studiert).
Kommunikationsinformatik, Bachelor, ASPO 01.10.2021
Code: KIB-MAT3
SAP-Submodul-Nr.:
Die Prüfungsverwaltung mittels SAP-SLCM vergibt für jede Prüfungsart in einem Modul eine SAP-Submodul-Nr (= P-Nummer). Gleiche Module in unterschiedlichen Studiengängen haben bei gleicher Prüfungsart die gleiche SAP-Submodul-Nr..
P222-0002
SWS/Lehrform:
Die Anzahl der Semesterwochenstunden (SWS) wird als Zusammensetzung von Vorlesungsstunden (V), Übungsstunden (U), Praktikumsstunden (P) oder Projektarbeitsstunden (PA) angegeben. Beispielsweise besteht eine Veranstaltung der Form 2V+2U aus 2 Vorlesungsstunden und 2 Übungsstunden pro Woche.
2V+1U (3 Semesterwochenstunden)
ECTS-Punkte:
Die Anzahl der Punkte nach ECTS (Leistungspunkte, Kreditpunkte), die dem Studierenden bei erfolgreicher Ableistung des Moduls gutgeschrieben werden. Die ECTS-Punkte entscheiden über die Gewichtung des Fachs bei der Berechnung der Durchschnittsnote im Abschlusszeugnis. Jedem ECTS-Punkt entsprechen 30 studentische Arbeitsstunden (Anwesenheit, Vor- und Nachbereitung, Prüfungsvorbereitung, ggfs. Zeit zur Bearbeitung eines Projekts), verteilt über die gesamte Zeit des Semesters (26 Wochen).
3
Studiensemester: 3
Pflichtfach: ja
Arbeitssprache:
Deutsch
Prüfungsart:
Klausur (120 min)

[letzte Änderung 04.07.2024]
Verwendbarkeit / Zuordnung zum Curriculum:
Alle Studienprogramme, die das Modul enthalten mit Jahresangabe der entsprechenden Studienordnung / ASPO-Anlage.

KIB-MAT3 (P222-0002) Kommunikationsinformatik, Bachelor, ASPO 01.10.2021 , 3. Semester, Pflichtfach
KIB-MAT3 (P222-0002) Kommunikationsinformatik, Bachelor, ASPO 01.10.2022 , 3. Semester, Pflichtfach
PRI-MAT3 (P222-0002) Produktionsinformatik, Bachelor, SO 01.10.2023 , 3. Semester, Pflichtfach
Arbeitsaufwand:
Der Arbeitsaufwand des Studierenden, der für das erfolgreiche Absolvieren eines Moduls notwendig ist, ergibt sich aus den ECTS-Punkten. Jeder ECTS-Punkt steht in der Regel für 30 Arbeitsstunden. Die Arbeitsstunden umfassen Präsenzzeit (in den Vorlesungswochen), Vor- und Nachbereitung der Vorlesung, ggfs. Abfassung einer Projektarbeit und die Vorbereitung auf die Prüfung.

Die ECTS beziehen sich auf die gesamte formale Semesterdauer (01.04.-30.09. im Sommersemester, 01.10.-31.03. im Wintersemester).
Die Präsenzzeit dieses Moduls umfasst bei 15 Semesterwochen 45 Veranstaltungsstunden (= 33.75 Zeitstunden). Der Gesamtumfang des Moduls beträgt bei 3 Creditpoints 90 Stunden (30 Std/ECTS). Daher stehen für die Vor- und Nachbereitung der Veranstaltung zusammen mit der Prüfungsvorbereitung 56.25 Stunden zur Verfügung.
Empfohlene Voraussetzungen (Module):
Keine.
Als Vorkenntnis empfohlen für Module:
Modulverantwortung:
Prof. Dr. Peter Birkner
Dozent/innen:
Dipl.-Math. Dimitri Ovrutskiy
Dipl.-Ing. Dirk Ammon
Dipl.-Math. Wolfgang Braun


[letzte Änderung 24.01.2020]
Lernziele:
Die Studierenden können mit komplexen Zahlen rechnen und sie effektiv in technischen Anwendungen benutzen. Die Studierenden sind in der Lage, die Frequenzzusammensetzung eines Signals zu analysieren, komplexe technische Problemstellungen mit Hilfe der Fourier-Analyse zu lösen, analoge und digitale Filter zu verstehen, zu analysieren und zu entwickeln. Die Studierenden bekommen einen Einblick in gängige Signalkomprimierungs- und Speicherungsverfahren.


[letzte Änderung 23.07.2024]
Inhalt:
1. Rechnen mit komplexe Zahlen, deren Formen, Rechenoperationen und deren (direkte) Anwendungen (Gleichungen, Polynom-Rechnung, Überlagerung der gleichfrequenten harmonischen Signale, Entwicklung der Additionssätze)
 
2. Fourier-Analyse
 
2.1 Periodische Signale
 
2.2 Fourier-Reihen: Existenz, reelle und komplexe Formen, Fourier-Spektren, Frequenzanalyse der kontinuierlichen periodischen Signale, Ansatz zu Signalkomprimierung
 
2.3 Fourier-Integral: nicht-periodische Signale, Darstellbarkeit, hinreichende Bedingung, absolute Integrierbarkeit reeller Funktionen, komplexe Form des Fourier-Integrals, Symmetrieeigenschaften vom FI und die reelle Form vom FI, Amplitudenfunktion
 
2.4 Fourier-Transformation: Operatoren und Transformationen, das Paar der Fourier-Transformierten, Amplitudenfunktion, Amplitudenspektrum, Phasenspektrum, Eigenschaften von kontinuierlicher FT, Rechenregeln, wichtige Korrespondenzen: Dirac´sche Delta-Funktion, Heaviside-Funktion, Gauß-Glocke und deren Transformierten
 
2.5 Anwendungen 1: Darstellung der stückweise konstanten Funktionen mit Hilfe der Heaviside-Funktion und deren Frequenzanalyse, Zustandsdiagramme
 
2.6 Anwendungen 2: Lineare Filter, Faltung, Faltungssatz, Translationsinvariante lineare Systeme, Impulsantwort eines LSI-Systems, klassische analoge Filterschaltunge 1. Ordnung (TP, HP, BP) und deren Frequenzanalyse, Differentialgleichungen und deren Lösung mit Hilfe von Fourier-Transformation, Anwendung auf die klassische linearen Filter, Idealer Tiefpass: Boxfunktion und deren Fourier-Transformierte, sinc-Funktion, digitale Filter, Design und Analyse
 
2.7 Diskrete FT (Ausblick): Diskretisierung des Signals mittels Delta-Kamm, Abtasttheorem von Shannon-Whittacker und Abtast- und Übertragungsartefakte, Diskrete Fourier-Transformation, Eigenschaften, Vergleich mit der kontinuierlichen FT, Symmetrie-Eigenschaften, Speicherung der Fourier-Transformierten diskreten Signale, Rücktransformation, Schnelle diskrete Fourier-Transformation (FFT), Rücktransformation mittels FFT, logarithmische Dynamikkompression des Amplitudenspektrums


[letzte Änderung 05.07.2024]
Literatur:
1. Papula. Mathematik für Ingenieure und Naturwissenschaftler, Band 2, Springer.
 
2. Babovsky, Beth, Neunzert, Schulz-Reese. Mathematische Methoden der Systemtheorie: Fourieranalysis (Mathematische Methoden in der Technik, Band 5). Teubner Stuttgart 1987
 
3. Stöcker, Fuchs, Konopka, Schneider. Analysis für Ingenieurstudenten, Band 2. Verlag Harri Deutsch, 1996 oder neuer.
 
4. S.A. Azizi. Entwurf und Realisierung digitaler Filter. Oldenbourg, 1981
 
5. R.W. Hamming. Digital Filters, 3d Ed. Dover Publications Inc., 1998


[letzte Änderung 05.07.2024]
Modul angeboten in Semester:
WS 2022/23, WS 2021/22, WS 2020/21, WS 2019/20, WS 2018/19
[Sun Dec 22 22:16:41 CET 2024, CKEY=km3, BKEY=ki2, CID=KIB-MAT3, LANGUAGE=de, DATE=22.12.2024]