htw saar Piktogramm QR-encoded URL
Back to Main Page Choose Module Version:
XML-Code

flag

Control Engineering I

Module name (EN):
Name of module in study programme. It should be precise and clear.
Control Engineering I
Degree programme:
Study Programme with validity of corresponding study regulations containing this module.
Electrical Engineering, Bachelor, ASPO 01.10.2005
Module code: E502
Hours per semester week / Teaching method:
The count of hours per week is a combination of lecture (V for German Vorlesung), exercise (U for Übung), practice (P) oder project (PA). For example a course of the form 2V+2U has 2 hours of lecture and 2 hours of exercise per week.
3V+1U (4 hours per week)
ECTS credits:
European Credit Transfer System. Points for successful completion of a course. Each ECTS point represents a workload of 30 hours.
5
Semester: 5
Mandatory course: yes
Language of instruction:
German
Assessment:
Written examination

[updated 11.03.2010]
Applicability / Curricular relevance:
All study programs (with year of the version of study regulations) containing the course.

E502. Biomedical Engineering, Bachelor, ASPO 01.10.2011 , semester 5, mandatory course, course inactive since 28.11.2013
E502 Electrical Engineering, Bachelor, ASPO 01.10.2005 , semester 5, mandatory course
Workload:
Workload of student for successfully completing the course. Each ECTS credit represents 30 working hours. These are the combined effort of face-to-face time, post-processing the subject of the lecture, exercises and preparation for the exam.

The total workload is distributed on the semester (01.04.-30.09. during the summer term, 01.10.-31.03. during the winter term).
60 class hours (= 45 clock hours) over a 15-week period.
The total student study time is 150 hours (equivalent to 5 ECTS credits).
There are therefore 105 hours available for class preparation and follow-up work and exam preparation.
Recommended prerequisites (modules):
E403 Systems theory


[updated 11.03.2010]
Recommended as prerequisite for:
E602 Control Engineering II


[updated 12.03.2010]
Module coordinator:
Prof. Dr. Benedikt Faupel
Lecturer:
Prof. Dr. Benedikt Faupel


[updated 11.03.2010]
Learning outcomes:
Students will acquire the basic skills necessary for understanding how control systems function. They will learn the terminology, the key control system parameters and the mathematical methods and tools needed to design, set up and optimize controllers for standard control tasks. The knowledge acquired in this module will enable students to solve the control problems in the automation engineering lab course and will provide them with the background needed to teach themselves more advanced methods of control engineering. This module forms the foundation for Control Engineering II and the Automation Engineering lab course.

[updated 11.03.2010]
Module content:
1.Introduction and fundamentals of analogue control engineering
  Closed-loop control elements and block diagrams
  Definitions, standards and nomenclature, distinction between open- and   
  closed-loop control Examples of practical implementations of closed-loop  
  control systems in process plants
 
2.Static and dynamic behaviour of closed-loop control systems
  Setpoint and interference response Determination of the stationary deviation  
  for various input signal characteristics
 
3.Design, adjustment and optimization of controllers in the time domain
  Tuning closed-loop control systems to give a defined damping response
  Tuning closed-loop control systems using the Ziegler-Nichols, Chiens, Hrones  
  and Reswick methods Tuning using the T-sum rule Tuning via the symmetric  
  optimum principle and optimum amplitude methods
 
4.Design, tuning and optimization of closed-loop controllers using the  
  frequency response plot method The root-locus method Phase margin and gain  
  margin tuning Tuning closed-loop control parameters in Bode plots
 
5.Discontinuous control (two-position and three-position controllers)
  Time response Optimization / Tuning discontinuous controllers
 
6.Introduction to MATLAB/SIMULINK

[updated 11.03.2010]
Teaching methods/Media:
Lecture notes, PC simulation using Matlab/Simulink, video projector

[updated 11.03.2010]
Recommended or required reading:
Unbehauen, H.: Regelungstechnik I; 11. Auflage; Vieweg Verlag, Braunschweig; 2001
Lutz, H.; Wendt, W.: Taschenbuch der Regelungstechnik; 3. Auflage; Verlag Harri Deutsch, Frankfurt/Main 2000
Föllinger, O.: Regelungstechnik; 8. Auflage; Hüthig Verlag, Heidelberg 1994
Föllinger, O.: Laplace- und Fourier-Transformation. Hüthig Verlag, Heidelberg, 1986
Meyr, H.: Regelungstechnik und Systemtheorie.  Wissenschaftsverlag Mainz, Aachen, 2000
Samal, E.; Becker, W.: Grundriss der praktischen Regelungstechnik. Oldenbourg Verlag, München 1996
L. Merz; H. Jaschek: Grundkurs der Regelungstechnik, Oldenbourg Verlag, München, 1985
H. Jaschek; W. Schwimm: Übungsaufgaben zum Grundkurs der Regelungstechnik,
Oldenbourg Verlag, München 1993
Leonard, W.: Einführung in die Regelungstechnik; 6. Auflage. Vieweg Verlag, Braunschweig 1992
Walter, H.: Kompaktkurs Regelungstechnik. Vieweg Verlag, Braunschweig 2001
Tröster, Fritz: Steuerungs- und Regelungstechnik für Ingenieure. Oldenbourg Verlag, München 2001

[updated 11.03.2010]
[Mon Dec 23 11:49:12 CET 2024, CKEY=eri, BKEY=e, CID=E502, LANGUAGE=en, DATE=23.12.2024]