htw saar Piktogramm QR-encoded URL
Back to Main Page Choose Module Version:
XML-Code

flag

Process Automation

Module name (EN):
Name of module in study programme. It should be precise and clear.
Process Automation
Degree programme:
Study Programme with validity of corresponding study regulations containing this module.
Electrical Engineering, Bachelor, ASPO 01.10.2005
Module code: E503
SAP-Submodule-No.:
The exam administration creates a SAP-Submodule-No for every exam type in every module. The SAP-Submodule-No is equal for the same module in different study programs.
P211-0024
Hours per semester week / Teaching method:
The count of hours per week is a combination of lecture (V for German Vorlesung), exercise (U for Übung), practice (P) oder project (PA). For example a course of the form 2V+2U has 2 hours of lecture and 2 hours of exercise per week.
3V+1U (4 hours per week)
ECTS credits:
European Credit Transfer System. Points for successful completion of a course. Each ECTS point represents a workload of 30 hours.
4
Semester: 5
Mandatory course: yes
Language of instruction:
German
Assessment:
Written examination

[updated 11.03.2010]
Applicability / Curricular relevance:
All study programs (with year of the version of study regulations) containing the course.

E503 (P211-0024) Electrical Engineering, Bachelor, ASPO 01.10.2005 , semester 5, mandatory course
Workload:
Workload of student for successfully completing the course. Each ECTS credit represents 30 working hours. These are the combined effort of face-to-face time, post-processing the subject of the lecture, exercises and preparation for the exam.

The total workload is distributed on the semester (01.04.-30.09. during the summer term, 01.10.-31.03. during the winter term).
60 class hours (= 45 clock hours) over a 15-week period.
The total student study time is 120 hours (equivalent to 4 ECTS credits).
There are therefore 75 hours available for class preparation and follow-up work and exam preparation.
Recommended prerequisites (modules):
E403 Systems theory


[updated 11.03.2010]
Recommended as prerequisite for:
Module coordinator:
Prof. Dr. Benedikt Faupel
Lecturer:
Prof. Dr. Benedikt Faupel


[updated 11.03.2010]
Learning outcomes:
Students will acquire the basic skills needed to select and apply the most suitable systems, strategies and tools to solve problems in process automation. The model-building methods learned during this course will enable students to identify suitable systems for real processes and workflows and to use them to configure automation systems. Students will become acquainted with the typical questions that arise in the practical implementation of automation projects.

[updated 11.03.2010]
Module content:
1.Introduction and fundamentals of automation technology
 1.1.Standards, regulations and guidelines
 1.2.Symbols / Designation and labelling of I&C points
 1.3.Structure and compilation of flow diagrams and P&I diagrams
 
2.Process identification
 2.1.Analysis techniques for building process models of analogue LTI systems
 2.2.Least squares method for building process models of discrete LTI systems
 
3.Use of sensors and actuators in automation engineering
 3.1.Interfacing and information processing of sensors and actuators
 3.2.Analogue value processing with a PLC (normalization)
 3.3.Function and operating principles of actuators
  
4.Automation of batch processes
 4.1.SFC programming in IEC 1131-compliant process control
 4.2.The structure and function of recipe control
 4.3.Implementing PLC programs using the SFC and S7-Graph languages
 
5.Communications systems in automation engineering
 5.1.Serial communication
 5.2.ISO/OSI layer model of communication
 5.3.Fieldbus systems (Profibus, CAN bus, Bitbus)
Implementing controllers on PLC systems
 5.4.Designing control functions (two-position, three-position and PID  
     controllers) at the function block level
 5.5.Matching and integrating controller function blocks in practical
     applications
 
6.Lab exercises using Matlab/Simulink
 
7.Lab exercises using PLC systems


[updated 11.03.2010]
Teaching methods/Media:
Lecture notes, PC simulation using Matlab/Simulink, PLC simulation using PLC-Sim and SIMIT, video projector

[updated 11.03.2010]
Recommended or required reading:
Siemens: S7 training documents (www.siemens.de/sce)
Wellenreuther, Zastrow:  Automatisieren mit SPS. Vieweg-Verlag. Wiesbaden
Wellenreuther, Zastrow:  Automatisierungsaufgaben mit SPS, Vieweg-Verlag. Wiesbaden
Grupp F.; Grupp F. Matlab 6 für Ingenieure. Oldenbourg Verlag, München 2002
Strohrmann, G.: Automatisierung verfahrenstechnischer Prozesse; Oldenbourg Verlag, München 2002
Schneider, E.: Methoden der Automatisierung; Vieweg Verlag, Braunschweig, 1999
Weigmann, J.; Kilian, G.: Dezentralisieren mit PROFIBUS-DP; 2. Auflage, Publics MCD Verlag, Erlangen, 2000
Berger, H.: Automatisierung mit STEP 7 in AWL und SCL; 3. Auflage, Publics MCD Verlag, Erlangen, 2002
Bode, H.: MATLAB in der Regelungstechnik. Teubner Verlag Leipzig, 1998

[updated 11.03.2010]
[Mon Dec 23 12:01:11 CET 2024, CKEY=epa, BKEY=e, CID=E503, LANGUAGE=en, DATE=23.12.2024]