htw saar Piktogramm QR-encoded URL
Back to Main Page Choose Module Version:
XML-Code

flag

The Statistics and Theory of Numerical Simulation

Module name (EN):
Name of module in study programme. It should be precise and clear.
The Statistics and Theory of Numerical Simulation
Degree programme:
Study Programme with validity of corresponding study regulations containing this module.
Engineering and Management, Master, SO 01.10.2024
Module code: MAM_24_A_1.01.MTS
Hours per semester week / Teaching method:
The count of hours per week is a combination of lecture (V for German Vorlesung), exercise (U for Übung), practice (P) oder project (PA). For example a course of the form 2V+2U has 2 hours of lecture and 2 hours of exercise per week.
5V+3U (8 hours per week)
ECTS credits:
European Credit Transfer System. Points for successful completion of a course. Each ECTS point represents a workload of 30 hours.
8
Semester: 1
Mandatory course: yes
Language of instruction:
German
Assessment:
Written exam 120 min.

[updated 04.11.2020]
Applicability / Curricular relevance:
All study programs (with year of the version of study regulations) containing the course.

DFMME-110 (P610-0443) Mechanical Engineering, Master, ASPO 01.10.2024 , semester 1, mandatory course
MAM_19_A_1.01.MTS (P241-0088) Engineering and Management, Master, ASPO 01.10.2019 , semester 1, mandatory course
MAM_24_A_1.01.MTS Engineering and Management, Master, SO 01.10.2024 , semester 1, mandatory course
Workload:
Workload of student for successfully completing the course. Each ECTS credit represents 30 working hours. These are the combined effort of face-to-face time, post-processing the subject of the lecture, exercises and preparation for the exam.

The total workload is distributed on the semester (01.04.-30.09. during the summer term, 01.10.-31.03. during the winter term).
120 class hours (= 90 clock hours) over a 15-week period.
The total student study time is 240 hours (equivalent to 8 ECTS credits).
There are therefore 150 hours available for class preparation and follow-up work and exam preparation.
Recommended prerequisites (modules):
None.
Recommended as prerequisite for:
MAM_24_PE_2.04.SHY Hydraulic Servo-Motors
MAM.2.1.2.29 Experiment Design and Quality Control


[updated 29.10.2023]
Module coordinator:
Prof. Dr. Marco Günther
Lecturer: Prof. Dr. Marco Günther

[updated 29.10.2023]
Learning outcomes:
Statistics:
After successfully completing this module, students will be able to solve statistical problems in the field of engineering sciences independently. They will be able to prepare and analyse complex data sets and interpret the results. Using suitable estimation methods, they will be able to draw conclusions about the population from a sample and critically scrutinize available statistics or the results of their evaluation.
  
Simulation Theory
In the context of engineering problems, students will be familiar with the basics of mathematical modeling and numerical methods. They will be familiar with the basic properties of partial differential equations, simple solution methods and know about the possibilities and limitations of numerical methods using the finite difference method.

[updated 04.11.2020]
Module content:
Statistics:
- Descriptive statistics: central tendencies and dispersion, correlation, regression
- Probability calculation: random variables und distributions, limit theorems
- Inferential statistics: point estimate, interval estimate, testing hypotheses
- Introduction to a statistics program package
 
 
Simulation Theory:
- Fundamentals of vector analysis (repetition)
- Fundamentals of partial differential equations (e.g. classification)
- Basic concepts of numerics like stability, convergence, error
- Solution methods: separable partial differential equation, Finite Differences Method (FDM)
- Applying the FDM to boundary value problems and initial boundary value problems
- Using Comsol Multiphysics as a solution tool


[updated 04.11.2020]
Teaching methods/Media:
Statistics:
Lecture: 3 hours per semester week, tutorials: 2 hours per semester week,  
Use of the web-based learning software ActiveMath:
http://markov.htw-saarland.de:8080/ActiveMath2/main/menu.cmd,
  
Simulation Theory:
Lecture: 2 hours per semester week, Tutorials: 1 hour per semester week,  
Blackboard, slides, handouts, tutorials

[updated 04.11.2020]
Recommended or required reading:
Statistics:
Weber H.: Einführung in die Wahrscheinlichkeit und Statistik für Ingenieure
Hartung J., Elpelt B.: Multivariate Statistik
Walz G., Grabowski B.: Lexikon der Stochastik mit Beispielen
Lecture notes _Deskriptive Statistik_, und Formelsammlung 1
Lecture notes _Wahrscheinlichkeitsrechnung_ und Formelsammlung 2
 
Simulation Theory:
Angermann A., Beuschel M, Rau M., Wohlfarth U.: MATLAB _ Simulink _ Stateflow
Knabner P., Angermann L.: Numerik partieller Differentialgleichungen


[updated 04.11.2020]
[Mon Dec 23 02:36:10 CET 2024, CKEY=msutds, BKEY=mm3, CID=MAM_24_A_1.01.MTS, LANGUAGE=en, DATE=23.12.2024]