htw saar Piktogramm QR-encoded URL
Back to Main Page Choose Module Version:
XML-Code

flag

Dynamics of Electrical Machines

Module name (EN):
Name of module in study programme. It should be precise and clear.
Dynamics of Electrical Machines
Degree programme:
Study Programme with validity of corresponding study regulations containing this module.
Electrical Engineering, Master, ASPO 01.10.2005
Module code: E908
Hours per semester week / Teaching method:
The count of hours per week is a combination of lecture (V for German Vorlesung), exercise (U for Übung), practice (P) oder project (PA). For example a course of the form 2V+2U has 2 hours of lecture and 2 hours of exercise per week.
3V+1U+1PA (5 hours per week)
ECTS credits:
European Credit Transfer System. Points for successful completion of a course. Each ECTS point represents a workload of 30 hours.
5
Semester: 8
Mandatory course: yes
Language of instruction:
German
Assessment:
Independent project work

[updated 12.03.2010]
Applicability / Curricular relevance:
All study programs (with year of the version of study regulations) containing the course.

E908 Electrical Engineering, Master, ASPO 01.10.2005 , semester 8, mandatory course
Workload:
Workload of student for successfully completing the course. Each ECTS credit represents 30 working hours. These are the combined effort of face-to-face time, post-processing the subject of the lecture, exercises and preparation for the exam.

The total workload is distributed on the semester (01.04.-30.09. during the summer term, 01.10.-31.03. during the winter term).
75 class hours (= 56.25 clock hours) over a 15-week period.
The total student study time is 150 hours (equivalent to 5 ECTS credits).
There are therefore 93.75 hours available for class preparation and follow-up work and exam preparation.
Recommended prerequisites (modules):
E804 Electrical Engineering Theory II


[updated 12.03.2010]
Recommended as prerequisite for:
Module coordinator:
Prof. Dr.-Ing. Vlado Ostovic
Lecturer:
Prof. Dr.-Ing. Vlado Ostovic


[updated 12.03.2010]
Learning outcomes:
After successfully completing this module, students will have a fundamental understanding of how to analyse transient responses in electrical machines. They will be able to describe an electrical machine using a linear or a nonlinear dynamic model and will be able to compute the machine’s dynamic behaviour in the time domain. They will be in a position to use their knowledge to calculate dynamic parameters of electrical machines and to develop and document solutions to specific technical problems in the field of controlled electrical motors and drives.

[updated 12.03.2010]
Module content:
1.General principles and machine models
 1.1.Ordinary differential equations for electrical machines
 1.2.Numerical methods for integrating systems of differential equations
 1.3.Nonlinearity in electrical machines
 1.4.Linear and nonlinear models of electrical machines
 
2.Transient responses in commutator machines
 2.1.Analytical solutions: mechanical and electromechanical time constants
 2.2.Numerical solutions
 
3.d-q models of polyphse machines
 3.1.Direct and quadrature axes in unsaturated electrical machines with  
     cylindrical rotors
 3.2.Physical interpretation of d-q variables; torque generation
 3.3.Transient responses in induction machines
 3.4.Transient responses in synchronous machines
 
4.Nonlinear dynamic models of electrical machines
 4.1.Physical fundamentals; Magnetization characteristics
 
5.Transient responses in immobile saturated magnetic circuits
 5.1.The role of magnetic energy; torque generation
 5.2.Transient responses in saturated induction machines
 5.3.Transient responses in saturated synchronous machines
 5.4.Transient responses in saturated special machines (switched reluctance  
     motors, PM motors, etc.)
 


[updated 12.03.2010]
Teaching methods/Media:
Lecture notes, overhead transparencies, video projector, PC

[updated 12.03.2010]
Recommended or required reading:
OSTOVIC, V.: Computer-aided Analysis of Electric Machines, Prentice-Hall, London, 1994
OSTOVIC, V.: Dynamics of Saturated Electric Machines, Springer-Verlag, New York, 1989

[updated 12.03.2010]
[Sun Dec 22 16:27:06 CET 2024, CKEY=eemd, BKEY=em, CID=E908, LANGUAGE=en, DATE=22.12.2024]