htw saar Piktogramm QR-encoded URL
Back to Main Page Choose Module Version:
XML-Code

flag



High and Ultra-High Frequency Engineering

Module name (EN):
Name of module in study programme. It should be precise and clear.
High and Ultra-High Frequency Engineering
Degree programme:
Study Programme with validity of corresponding study regulations containing this module.
Electrical Engineering and Information Technology, Bachelor, ASPO 01.10.2018
Module code: E2512
SAP-Submodule-No.:
The exam administration creates a SAP-Submodule-No for every exam type in every module. The SAP-Submodule-No is equal for the same module in different study programs.
P211-0092
Hours per semester week / Teaching method:
The count of hours per week is a combination of lecture (V for German Vorlesung), exercise (U for Übung), practice (P) oder project (PA). For example a course of the form 2V+2U has 2 hours of lecture and 2 hours of exercise per week.
4V+1U (5 hours per week)
ECTS credits:
European Credit Transfer System. Points for successful completion of a course. Each ECTS point represents a workload of 30 hours.
6
Semester: 5
Mandatory course: yes
Language of instruction:
German
Assessment:
Written exam

[updated 08.01.2020]
Applicability / Curricular relevance:
All study programs (with year of the version of study regulations) containing the course.

E2512 (P211-0092) Electrical Engineering and Information Technology, Bachelor, ASPO 01.10.2018 , semester 5, mandatory course, technical
Workload:
Workload of student for successfully completing the course. Each ECTS credit represents 30 working hours. These are the combined effort of face-to-face time, post-processing the subject of the lecture, exercises and preparation for the exam.

The total workload is distributed on the semester (01.04.-30.09. during the summer term, 01.10.-31.03. during the winter term).
75 class hours (= 56.25 clock hours) over a 15-week period.
The total student study time is 180 hours (equivalent to 6 ECTS credits).
There are therefore 123.75 hours available for class preparation and follow-up work and exam preparation.
Recommended prerequisites (modules):
None.
Recommended as prerequisite for:
Module coordinator:
Prof. Dr. Martin Buchholz
Lecturer: Prof. Dr. Martin Buchholz

[updated 10.09.2018]
Learning outcomes:
After successfully completing this module, students will be able to name the basic challenges of high-frequency and microwave technology. - They will understand and be able to evaluate the characteristics of processing high-frequency signals and wire-bound or radio-based transmission. - Students will have mastered the techniques required to independently perform the typical tasks in high-frequency engineering, such as optimizing power parameters, calculating matching networks and specifying a transmission line. - Students will be able to use common computer-aided calculation and design tools. - They will be able to deal with scattering parameters and set up the scattering matrix for active and passive high-frequency assemblies. - Students will be able to describe the differences between an electro-magnetic near field and far field. - They will be able to analyze how an antenna works and characterize the antenna metrologically. - Students will understand the basic principles of transmission on optical fibers and in optical networks. - They will be able to explain a complete optical transmission line. - Students will be able to evaluate the current technical data of optical components and systems. - And use the acquired skills to specify an optical transmission line.

[updated 08.01.2020]
Module content:
1. Introduction to high frequency engineering 2. Transmission line theory 3. Wave propagation on Lecher lines 4. Impedance transformation 5. Matching and transformation circuits 6. Line diagrams 7. Scattering parameters 8. Waveguides 9. Resonators - coupled bandpass filters 10. Striplines - microstrip and stripline 11. Radio tranmsmission theory 12. Hertz dipole, far and near field 13. Antennas 14. Passive and active components of HF technology - filters, mixers, insulators, circulators, directional couplers, oscillators 15. Optical waveguides 16. Optical transmitters, amplifiers and receivers 17. Optical communications and metrology

[updated 08.01.2020]
Teaching methods/Media:
Lecture notes, video projector, explanatory videos, Turning Point Interactive Learning System

[updated 08.01.2020]
Recommended or required reading:
Brückner, Volker: Optische Nachrichtentechnik, Grundlagen und Anwendungen, Vieweg, 2003 Detlefsen, Jürgen; Siart, Uwe: Grundlagen der Hochfrequenztechnik, Oldenbourg, (latest edition) Geißler, Rainer; Kammerloher, Werner; Schneider, Hans W.: Berechnungs- und Entwurfverfahren der Hochfrequenztechnik, Vieweg Heuermann, Holger: Hochfrequenztechnik: Lineare Komponenten hochintegrierter Hochfrequenzschaltungen, Vieweg, 2005, 1. Aufl. Kark, Klaus: Antennen und Strahlungsfelder: Elektromagnetische Wellen auf Leitungen, im Freiraum und ihre Abstrahlung, Vieweg, 2006, 2. Aufl. Meinke, Hans-Heinrich: Taschenbuch der Hochfrequenztechnik, Springer, (latest edition) Pehl, Erich: Mikrowellentechnik: Grundlagen, Leitungen, Antennen, Anwendungen, VDE, (latest edition) Schiffner, Gerhard: Optische Nachrichtentechnik: Physikalische Grundlagen, Entwicklung, moderne Elemente und Systeme, Teubner, 2005, ISBN 978-3519004462 Voges, Edgar: Hochfrequenztechnik: Bauelemente, Schaltungen, Anwendungen, Hüthig, 2004, ISBN 978-3826650390 Voges, Edgar; Petermann, Klaus: Optische Kommunikationstechnik, Handbuch für Wissenschaft und Industrie, Springer, (latest edition) Zinke, Otto; Brunswig, Heinrich: Hochfrequenztechnik 1: Hochfrequenzfilter, Leitungen, Antennen,, Springer, 1999, ISBN 978-3540664055 Zinke, Otto; Brunswig, Heinrich: Hochfrequenztechnik 2: Elektronik und Signalverarbeitung, Springer, 1998, ISBN 978-3540647287

[updated 08.01.2020]
[Mon Dec 23 02:54:32 CET 2024, CKEY=e3E2512, BKEY=ei, CID=E2512, LANGUAGE=en, DATE=23.12.2024]